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Abstract The interrelation between two different theoretical formulations of the theory of 
scanning tunnelling microscopy (STM) is investigated. The mathematical equivalence of the 
current density formulation of m theory and the generalized Ehrenfest theorem (GET) is 
demonstrated. The cm is of practical impnance, because it facilitates the numerical evaluation 
of the tunnel current and provides additional physical insight Using formal scattering theory, 
b e  integration of the current density over a plane parallel U1 the sample eleclrode yields half 
the value o t  the tow tunnel current ai obtzined from he generalized Ehrenfest theorem. This 
discrepancy is removed if an adequate normalization of the wavefunction in L e  current density 
formulation is chosen. The proof includes a generalization of Bardeen’s transfer Hamiltonian 
expression for the transition mabix element 

1. Introduction 

The intuitive approach to calculating the current in STM theory is to first evaluate the 
current density in position space and then to integrate it over an interface parallel to the 
electrodes (Lucas et ol 1988, Vigneron et a1 1990, Derycke et a1 1991). An apparently 
completely different approach starts from the transfer Hamiltonian formulation given by 
Bardeen (1961). This is  a perturbative theory that agrees with exact methods (e.g. the 
wavefunction matching method (Garcia et a1 1983, Stoll et al 1985)) in the limit in which 
the overlap is small. Problems connected with the derivation of Bardeen’s result have 
been discussed in the literature (Prange 1963, Duke 1969). Feuchtwang and Cutler (1987) 
emphazised the importance of these unsolved problems for STM theory. 

Several three-dimensional approaches to the theory of STU have been formulated which 
do not rely on Bardeen’s perturbation approach (see e.g. Lang (1987) and Noguerra (1989)). 
Numerically exact solutions of the STM current have been sought mainly via a current 
density formulation (Pendry et ai 1991, Lucas et al 1988, Vigneron et ol 1990, Derycke 
et ai 1991). The connection between the current density formulation and the transfer 
Hamiltonian approach has, however, remained unclear and this needs to be established in 
order to obtain a sound foundation of STM theory. Pendry er al (1991) addressed this 
problem by starting from the current density point of view and deriving Bardeen’s transfer 
Hamiltonian expression in the perturbation limit. The idea behind the transfer Hamiltonian 
approach can be generalized to an exact treatment of STM theory by using the generalized 
Ehrenfest theorem (GET) (Doyen 1993). 

The current density itself is not an observable as it implies simultaneous sharp 
measurements of position and momentum (Schiff 1968). It is usually maintained that 
integration over an interface yields the observable ‘total current’. The primary aim of 
this paper is to prove the equivalence of the current density formulation and the GET. It has 
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already been demonstrated that the GET has relevance in real calculations, because it offers 
several advantages (Doyen 1992). The current density formulation requires integration in 
the position space of an oscillating function. The summation over the initial states involves 
the evaluation of many different current densities. This is time consuming and of limited 
accuracy. The calculation of the Green operator in the local environment of the tip also 
requires a summation over many states. With the help of the GET the total current can be 
obtained directly from quantities which become available when constructing the local Green 
operator. The additional steps necessary for evaluating the current density distribution can 
then be omitted. The GET also provides additional physical insight, because it allows the 
definition of the tip-projected local density (TIP-LOD) and capacitor-projected local density 
(CAP-LOD) which are helpful in the interpretation of the numerical results. The total 
tunnel current factorizes in TIP-LOD, CAP-LOD and the square of an effective tip-induced 
potential, which permits us to separate the influence of the tip-sample interaction on the 
tunnel current in a unique way (Doyen 1993). 

The problem is stated in its mathematical form in section 2. A generalization of 
Bardeen's formula which applies to the exact transition matrix element is derived in 
section 3. This generalized Bardeen formula is an essential step in the proof of the 
equivalence of the two approaches. The expansion coefficients of the exact scattering 
wavefunction in a plane-wave basis are calculated in section 4. The normalization of the 
scattering wavefunction is discussed in section 5. 

2. The problem 

The exact formulation in scattering theory is to calculate the total current of the scattering 
wavefunction li+) from the generalized Ehrenfest theorem (GET) (Lippmann 1965): 

where I f )  is a current-caving state in the sample metal (the states are labelled by the 
incident momentum i and the final momentum f, respectively). The meaning of the 
scattering potentials is explaind below. Equation ( 1 )  describes the scattering of a single 
electron. To obtain total tunnel currents as measured in experiment, the contributions due 
to all incoming electrons have to be summed. In this paper only the current induced by a 
single electron is calculated. 

As Bardeen's expression can be derived from the generalized Ehrenfest theorem in first- 
order perturbation theory (by replacing li+) by the unperturbed tip wavefunction li)), the 
work of Pendry et al (1991) can be taken as having demonstrated that in the perturbation 
limit the current density formulation and the GET reduce to the same expression. However, 
this does not prove the equivalence to the GET for strong coupling and hence does not 
establish the connection to the exact formulation of scattering theory. The current density 
of the scattering wavefunction li+) is defined by 

(2 )  
eh eR 
m 2im j ( r )  = - Im(@:+v@i+) = -(@:+V@i+ - (V@L)+i+). 

We make the connection between formal scanering theory and the position space 
representation of the scattering wavefunction by means of the relationship: 

@i+(rj = (T I i+) = I k)(k I a+) 
k 



Tunnel current and generalized Ehrenfest theorem 3307 

where Ik) is a generalized eigenvector of the momentum operator and 

(r 1 k) = (%h)-’”eikr’*. 

The definition of the total current is the surface integral of the current density: 

The second line is a short-hand notation for the surface integral. As we use an exact 
description of the one-electron scattering process, the boundq  surface aG can be any 
interface parallel to the sample electrodes, because total current is conserved. In particular, 
aG can be assumed to be far inside the sample metal. Inserting the expansion (cf section 4) 

in the expression equation (3) for the total current yields, with the notation defined in 
equation (3). 

We shall prove that the following relationship holds in general: 

eh 
2im 

Jac(i) = -[(i+ IVi+)ac - ( V i +  li+)acl 

As we need an expression for (i+ I f )  and the square bracket in equation (5). the proof 
of equation (6) obviously involves the conversion of a surface integral to a sum over volume 
integrals. In his perturbation theory Bardeen provided a relationship between a transition 
matrix element and a surface integral over a cunent density expression. His treatment 
(published before Lippmann derived the GET) is, however, only valid in the perturbation 
limit. We need a corresponding expression for the exact transition matrix element in 
equation ( I  ). Therefore we derive in the next section a generalization of Bardeen’s formula 
The expression of equation (6) differs by a factor of 2 from the GET of equation (1). This 
is connected with the normalization of the scattering wavefunction and will be explained in 
section 5. For the remainder of this paper we use atomic units (e = m = h = I ) .  

3. Generalization of Bardeen’s formula 

3.1. Partitioning of the Hamiltonian and the measuring state 
The total Hamiltonian can be partitioned in various ways: 

H = HO t Vtip-sample 

= Ho + vtip + V”ie 

= H t i p  + Hsampie + Vtip 

= -‘v2 2 -k v m n p i e  + v t i p  t vbare 
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where Hrip and Hrmple are the Hamiltonians of the isolated tip and sample, respectively. Ho 
describes two separated electrodes without the potential provided by the atoms in the samp\e 
leading to multiple scattering. Vtip is the interaction potential between tip and sample surface. 
Vmplc is the scattering potential of the atoms in the sample: Vtip-mp~e = Vtip + 

In the following it is always assumed that the current flows from the tip to the sample. 
The measuring state If) is defined as an eigenstate of the kinetic energy operator: 

(8) 

The measurement might be thought of as detecting the electron in the state I f )  in 
a region of flat potential after it has passed through the tunnel junction and the sample 
electrode. In this paper scattering states are considered as generalized eigenvectors with 
&function normalization (Bahm 1979). 

3.2. The lransitian matrix eiemenf 

The transition matrix element in the GET equation (1) can be manipulated in the following 
way: 

1 2  - q v  If) = EJlf). 

Tfi = ( f l  Vrip-sample l i+) 
= ( f lH - Holi+) 

= (flH - mi+) + ((HO - E,)fli+) 
= (flHli+) - (flW+) - Er(fli+) + (&Ai+) 
= (fl(H - Ef)i+) + (Hofli+) - (flHoi+). (9) 

The bra-ket notation implies integration over all space. The first term in the last line of 
equation (9) is zero, because we consider elastic scattering with E; = E/ .  Concerning the 
operation on the measuring state I f ) ,  Ho is the kinetic energy operator (cf equation (8)): 

(f lVt ip-mplel i+) = (fVZfli+) - (flfVZli+). (10) 

Hence we recover the one-particle version of the equation which is found in Bardeen's 
paper (Bardeen 1961). Applying the product rule for differentiation 

V(Vfli+) = (VflVi+) + (V*f li+) 

0") = (VflVi+) + (flVZi+) 

the transition matrix element can be cast in the form 

which, explicitly written as an integral, yields 

(flVrip-6ampleli+) = 4 dr'v[!h+V$; - +;v+i+1. (12) s 
The integration can be restricted to a finite region G in space, if the integrand 

+ ; l j ( ~ )  VriP-,,,~,(r)~;+(r) decays exponentially away from the tunnel junction. In this case, 
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Gauss' theorem can be used to rewrite the transition matrix element as a surface integral 
over the boundary .3G of G: 

= ; [ ( v f l i + ) a G  - (fIVi+)acl. (13) 

We refer to this relationship as the generalized Bardeen formula. It is important, 
because it converts the exact transition matrix element to a surface integral. Up to now this 
conversion has only been demonstrated to be valid in perturbation theory under additional 
assumptions for the wavefunctions as discussed by Bardeen. The treatment is exact, but 
it is valid only for a plane-wave final state. The question is whether such an expression 
also holds for an eigenstate of Hmple as final state. This is indeed the case as will be 
proved in the next section by means of Gell-Mann and Goldberger's theorem (Gell-Mann 
and Goldberger 1953, Goldberger and Watson 1964). 

3.3. Using exact sample states: elimination of VMmaple 

In practical calculations, the wavefunctions of the unperturbed sample electrode are 
commonly evaluated before the tip is introduced. It is therefore useful to have an expression 
for the transition matrix element where, instead of plane waves, these eigenstates of Hsamplc 
appear as final states. These eigenstates already contain the scattering effects of the potential 
inside the sample and therefore VSmple can be eliminated from the transition matrix element 
as will be shown in the following. 

We write the Hamiltonian in the form: 

H = -LVZ 2 'r &ample f Vtip-mple + vbas.  

The state I f )  still denotes an eigenstate of the kinetic energy operator (cf equation (8)). We 
define eigenstates of HmPle: 

Ymplelf*) = Eflf*). (14) 

According to Gell-Mann and Goldberger (1953) the transition matrix element can be written 
in the form 

( f lVt ip - s .mpdi+)  = (fl v m p d f + )  + (f - IVtipIi+). (15) 
The first term on the right-hand side does not contribute to the tunnel current, because it 
describes pure forward scattering of electrons in the sample metal: 

(fIvsarnpl,lf+) = ( f lH*ampdf+)  - ( f l -  $VZIf+) 

= E m f + )  - Ef(flf+) = 0. 
We now have a version of the generalized Bardeen formula where the transition matrix 
element is expressed using the tip-induced potential and exact sample states: 

(f - IVtipIi+) = f [ (Vf~i+)ac  - (f~vi+)acl. (16) 
With the help of equations (5)  and (16) one obtains 

~ac( i )  = -iJJi+ I ~ M -  1vtipli+). (17) 
f 

In order to demonstrate the equivalence of this expression to the GET one has to study the 
properties of the expansion coefficients (i + If). 
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4. Expansion coefficients for the scattering wavefunction 

Assume aG to be a plane parallel to the surface deep inside the sample solid. In this region 
li+) represents a wave moving away from the surface. The scattering wavefunction li+) 
can therefore be expanded in outgoing plane-wave states in the sample surface as described 
by equation (4). Using the Lippmann-Schwinger equation 

l i+) l i )  + G$(Ej)Vtip-smp~eli+) 

and the fact that initial and final states lie on the energy shell 

lim(fICo(Ei + iq = Ef)lf) = - i d ( &  - E,) 
4-LO 

one obtains 

Here we have used the theorem of Gell-Mann and Goldberger. Inserting this expression for 
the expansion coefficient into equation (17) one obtains 

J G ( ~ )  IV - IVvtipIi+)lZ6(Ei - E/ ) .  (19) 
f 

This proves equation (6). which states that the surface integral of the current density over 
a surface deep inside the sample is identical to Ehrenfest’s theorem up to a factor of 2. 

5. Normalization of wavefunctions 

The relationship equation (6) can also be derived in a slightly different way which 
demonskates more clearly the origin of the missing factor 2. We follow the first steps 
in deriving the generalized Ehrenfest theorem from the Heisenberg equation of motion. For 
any hermitian operator A that commutes with HO one has 

d 
-(i + IAli+)  = A(i + IIA. Hili+) dt 1 

I 
i = -(Z + IAVtip-sany~eli+) t <Z+ IVtip-mpleAlif))  

= 2 I m ( i + I A V l i + )  

where we used 

[A, Ho + Kip-Jamplc1 = [ A ,  Vtip-samp~el. 

Specializing to the operator 
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~ ( i )  = -uI~+)I’ = 2Im C(i + ~ f ) ( f ~ v t i ~ - . ~ ~ t ~ ~ i + ) .  
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one obtains 
d 
dl f 

We demonstrated above (cf equation (17)) that z,(i + If)(flVtip-samp~eli+) is purely 
imaginary and therefore 

= 2Im(i + IVi+)ac 
= 2Ja& 

This is equivalent to equation (6) and demonstrates on a very basic level that formal 
scattering theory will inevitably lead to twice the value for the tunnel current as the c m n t  
density integration. The important point to notice is that we assumed all wavefunctions to 
be normalized as in formal scattering theory: 

STM theories (Lucas et al 1988, Vigneron et a! 1990, Derycke et al 1991) which use the 
current density picture normalize differently, however, namely in such a way that the flux 
before and after the scattering process is conserved 

Here we decomposed the total scattering wavefunction into an incoming plane wave li) and 
a scattered wave lAi ) :  

(i + @+) = (ili). 

~(il.ili)~~l = ~ ( ~ i l . i l ~ i ) ~ ~ l .  

Ali+) = li) + lAi) 

.i = ii(’F - 3) 
The factor A accounts for a different normalization. Expanding the scaitered wave / A i )  in 
plane waves 

IAi) = xc/lf) 
f 

one obtains with a surface aG enclosing all scattering centres at asymptotically large 
distances: 

I (A i lJ lWacl= CIflc; = If lcC;.  
f f 

The last equality sign is valid because summation is on the energy shell. This is the 
total outgoing flux which has to be equal to the incoming flux, lil = lfl. and therefore 
normalization has to be such that 

This implies, however, that 

and hence 

Hence the current density of ( A l i + ) )  is twice that of li+). The conclusion is therefore 
that by using the standard normalization of the current density picture one obtains the same 
total current as with the generalized Ehrenfest theorem, where in the latter case one uses 
the normalization of formal scanering theory. 

(Ai lAi)  = ( f l f )  = (ili) 

A’(i  t lit) = (ili) + (Ailhi) = Z ( i  t [i+). 
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6. Conclusion 

This paper has discussed the interrelation of two different methods to calculate the current 
in the scanning tunnelling microscope: the current density formulation and the generalized 
Ehrenfest theorem. This is of interest because the GET offers several advantages for real 
calculations. The equivalence of the two methods has been demonstrated. 

Acknowledgments 

Financial support by the Sonderforschungsbereich 6 of the Deutsche Forschungsgemein- 
schafi and by the Fonds der Chemischen Industrie is gratefully acknowledged. The author 
is indebted to Dejana Drakova and Erich Koetter for assistance and helpful discussions. 

References 

Bardeen J 1961 Phys. Rev. Lcri. 6 57 
Bbhm A 1979 Quunrrun Mechanics (New York Springer) p 56 
Derycke 1. Vignemn J P. Lambin P, Moyaux T and Lucas A A 1991 Inf. J .  Quanrwn C h m .  25 687 
Doyen G 1993 Springer Series in Surfn~e Sciences VOI 29, ed R Wiesendanger and H-J GUntherodl (Berlin: 

Springer) p 23 
Duke C B 1969 Tunneling; in Solid.$. Solid Stare Physics, Supplement IO ed F Seitz, D Turnbull and H Ehnreich 

(New Yak: Academic) 
Ehrenfest P 1927 2. Physik 45 455 
Feuchtwang T E and Cutler P H 1987 Phys. Scr. 35 132 
Garcia N. Ocal C and Mores F 1983 Phys. Rev. Le11 50 2002 
Gell-Mann M and Goldberger M L 1953 Phys. Rev. 91 398 
Goldberger M L and Watson K 1 9 s  Collision Theory (New York Wiley) p 202 
Lang N D I987 Phys. Rev. B 36 8173 
Lippmann B A 1965 Phys. Rev. Len. 15 I 1  - 1966 Phys. Rev. Len. 16 135 
Lucas A A, Morawitz H. Henry G R. Vigneron J P, Lambin P, Culler P H and Feuchtwang T E 1988 Phys. Rev. 

Noguera C 1989 J. Physique 50 2587 
Pendry J B. R.%e A B and K N ~ Z E ~  B C H 1991 1. Phys.:Condens. Maner 3 4313 
Prange R E 1963 Phys. Rev. 131 1083 
Schiff L I 1968 Qrlanrum Mechanics 3rd edn (Tokyo: McGmw-Hill) p 21 
Sulll E. Baratoff A. Selloni A and Carvendi P 1985 J. Phys. C: Solid Slale Phys. 17 3073 
Vigncmn J P. Schemer M. Lsloyaux T. Derycke I and Lucas A A 1990 Vacuum 41 745 

B 37 10708 


